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Abstract. We recall the definition of strong homotopy derivations of A∞
algebras and introduce the corresponding definition for L∞ algebras. We de-

fine strong homotopy inner derivations for both algebras and exhibit explicit

examples of both.

1. Introduction

The concept of a strong homotopy derivation of an A∞ algebra was introduced
by Kajiura and Stasheff in [2]. In this note we will introduce the corresponding
concept for L∞ algebras. We will discuss several concrete examples of such algebras
and strong homotopy inner derivations on them.

In section 2, we recall the definitions of A∞ and L∞ algebras and discuss an
explicit example of each. We will use these examples to exhibit examples of strong
homotopy derivations.

In section 3, we review the definition of a strong homotopy derivation of an A∞
algebra. We introduce the concept of an inner such derivation of these algebras
and present an explicit example of this concept by using the A∞ algebra in the
previous section.

The next section contains our definition of a strong homotopy derivation of an
L∞ algebra. We discuss the concept of inner derivation and present a concrete
example of such a derivation on the L∞ algebra in Section 2.

In the final section we will discuss the relationship between the A∞ data and
the L∞ data using symmetrization.

We work in the setting of Z graded vector spaces and will occasionally use the
notation |x| to denote the degree of an element x.

2. A∞ and L∞ Algebras

Definition 1. An A∞ algebra [6] structure on a Z graded vector space V is a
collection of degree one linear maps mn : V ⊗n → V that satisfy the relations∑

k+l=n+1

k∑
i=1

(−1)αmk(v1, . . . , vi−1,ml(vi, . . . , vi+l−1), vi+l, . . . , vn) = 0 (2.1)

for n ≥ 1 and α is the sum of the degrees of the elements v1, . . . , vi−1.
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We remark that this definition differs from but is equivalent to the original
definition [6] in which the maps mn have degree n− 2 and the signs are adjusted
accordingly. It is well known [6] that the structure maps mn’s may be extended
to a degree +1 coderivation m on the tensor coalgebra T c(V ) of V , and that the
relations are equivalent to the equation m2 = 0.

Example 2. [1] Consider the graded vector space in which V−1 has basis
< x1, x2 >, V0 has basis < y >, and Vn = 0 otherwise. Define degree one maps

m1(x1) = m1(x2) = y

mn(x1 ⊗ y⊗k ⊗ x1 ⊗ y⊗n−2−k) = x1, 0 ≤ k ≤ n− 2

mn(x1 ⊗ y⊗n−2 ⊗ x2) = x1

mn(x1 ⊗ y⊗n−1) = y

and mn = 0 on the remaining elements of V . This determines an A∞ algebra
structure on V .

We next recall the definition of L∞ algebras.

Definition 3. [5] An L∞ algebra structure on a Z graded vector space V is a
collection of degree one graded symmetric linear maps ln : V ⊗n → V, n ≥ 1, that
satisfy the relations (higher order Jacobi relations)∑

j+k=n

∑
σ

(−1)e(σ)l1+j(lk(vσ(1), . . . , vσ(k)), vσ(k+1), . . . , vσ(n)) = 0

where σ runs over all (k, n-k ) unshuffle permutations. The exponent e(σ) is the
sum of the products of the degrees of the elements that are permuted, sometimes
known as the Koszul sign..

Again, we remark that this definition differs from but is equivalent to the orig-
inal definition [5] in which the maps ln have degree n − 2 and are graded skew
symmetric with the signs adjusted. Also, the structure maps may be extended
to a degree +1 coderivation l on the symmetric coalgebra Sc(V ) on V , and the
relations are equivalent to l2 = 0. [4],[5]

It is well known that skew symmetrization of an A∞ algebra structure yields an
L∞ algebra structure [4] when one utilizes the original definitions. However, with
the definitions that we use here, we symmetrize the data in the example above to
obtain

Example 4. Consider the graded vector space in which V−1 has basis < x1, x2 >,
V0 has basis < y >, and Vn = 0 otherwise. Define degree one symmetric maps

l1(x1) = l1(x2) = y

ln(x1 ⊗ y⊗n−1) = (n− 1)! y

ln(x1 ⊗ y⊗n−2 ⊗ x2) = (n− 2)! x1

and extend the maps using symmetry. This yields an L∞ algebra structure on V .

We will use these examples above to illustrate examples of strong homotopy
derivations which we will define in the next two sections.
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3. Strong Homotopy Derivations of A∞ Algebras

Kajiura and Stasheff [2] have formulated the following definition:

Definition 5. A strong homotopy derivation of degree one of an A∞ algebra
(V, {mn}) is a collection of degree one linear maps θq : V ⊗q → V, q ≥ 1, that
satisfy the relations

0 =
∑

r+s=q+1

r−1∑
i=0

(−1)β(s,i)θr(v1, . . . , vi,ms(vi+1, . . . , vi+s), . . . , vq) (3.1)

+(−1)β(s,i)mr(v1, . . . , vi, θs(vi+1, . . . , vi+s), . . . , vq).

The exponent β(s, i) results from moving the degree one maps ms and θs past
(v1, . . . , vi). The θq’s may be extended to a degree +1 coderivation θ on T c(V )
and the relations then can be described by the equation [m,θ] = 0.

As an example of such a structure, we can define a strong homotopy inner
derivation of an A∞ algebra.

Proposition 6. Let (V, {mn}) be an A∞ algebra and let a ∈ V have the property
that m1(a) = 0 and the degree of a is even. Then the maps

θn(v1, . . . , vn) = mn+1(a, v1, . . . , vn) + . . . (3.2)

+mn+1(v1, . . . , vi, a, vi+1, . . . , vn) + · · ·+mn+1(v1, . . . , vn, a)

define a strong homotopy derivation of V . We call such a derivation inner.

Proof. It can be calculated that the defining relations for a strong homotopy
derivation in this case result in n + 1 copies of the defining relations for an A∞
algebra except for terms that involve m1(a). Because of our requirement that
m1(a) = 0, we may add in the missing terms and utilize the A∞ algebra relations
n+ 1 times to obtain the result. �

Recall the example of an A∞ algebra in Section 2. There we had the following
data. Consider the graded vector space in which V−1 has basis < x1, x2 >, V0 has
basis < y >, and Vn = 0 otherwise. We may construct a strong homotopy inner
derivation on V by letting a = y. One may then calculate resulting θn’s to be

θ1(x1) = y

θn(x1 ⊗ y⊗k ⊗ x1 ⊗ y⊗n−2−k) = nx1

θn(x1 ⊗ y⊗n−1) = ny

θn(x1 ⊗ y⊗n−2 ⊗ x2) = (n− 1)x1

and θn = 0 on the terms not mentioned.
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4. Strong Homotopy Derivations of L∞ Algebras

We now turn our attention to L∞ algebras.

Definition 7. A strong homotopy derivation of degree one of an L∞ algebra
(V, {ln}) is a collection of degree one graded symmetric linear maps θq : V ⊗q →
V, q ≥ 1, that satisfy the relations

n∑
j=1

∑
σ

(−1)e(σ)θn−j+1(lj(vσ(1), . . . , vσ(j)), vσ(j+1), . . . , vσ(n)) (4.1)

+(−1)e(σ)ln−j+1(θj(vσ(1), . . . , vσ(j)), vσ(j+1), . . . , vσ(n)) = 0

where σ runs over all (j, n− j) unshuffle permutations.

The exponent e(σ) is the sum of the products of the degrees of the permuted
elements. As we saw for A∞ derivations, we may express the defining relations for
strong homotopy derivations on L∞ algebras by the equation [l,θ] = 0 where θ is
the degree +1 coderivation on Sc(V ) induced by the θn’s. See [7] for details.

As an example, we define a strong homotopy inner derivation of an L∞ algebra.

Proposition 8. Let (V, {ln}) be an L∞ algebra and let a ∈ V have the property
that l1(a) = 0 and the degree of a is even. Then the maps

θn(v1, . . . , vn) = ln+1(v1, . . . , vn, a) (4.2)

define a strong homotopy derivation of V .

Proof. We compute
n∑

j=1
σ

(−1)e(σ)θn−j+1(lj(vσ(1), . . . , vσ(j)), vσ(j+1), . . . , vσ(n))

+(−1)e(σ)ln−j+1(θj(vσ(1), . . . , vσ(j)), vσ(j+1), . . . , vσ(n))

=

n∑
j=1
σ

(−1)e(σ)ln−j+2(lj(vσ(1), . . . , vσ(j)), vσ(j+1), . . . , vσ(n), a)

+(−1)e(σ)ln−j+1(lj+1(vσ(1), . . . , vσ(j), a), vσ(j+1), . . . , vσ(n))

=

n∑
j=1
σ

(−1)e(σ)ln−j+2(lj(vσ(1), . . . , vσ(j)), vσ(j+1), . . . , vσ(n), a)

+(−1)e(σ)(−1)αln−j+1(lj+1(vσ(1) . . . , vσ(j), a), vσ(j+1), . . . , vσ(n))

+(−1)βln+1(l1(a), v1, . . . , vn) = 0

because these are precisely the L∞ algebra relations on (v1, . . . , vn, a). Note that
it is necessary to add the last line, where β = |a|

∑n
i=1 |vi|, to the homotopy

derivation relations to obtain the L∞ algebra relations; this term, however, is zero
because of our assumptions on the element a. The sign in the next to last line
reduces to the required (−1)e(σ) because α = |a|

∑n
i=j+1 |vσ(i)| is even. �
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Recall the example of an L∞ algebra in Section 2. There, V = V−1 ⊕ V0 with
basis for V−1 =< x1, x2 > and basis for V0 =< y > and the degree one graded
symmetric maps given by

l1(x1) = l1(x2) = y

ln(x1 ⊗ y⊗n−1) = (n− 1)! y

ln(x1 ⊗ y⊗n−2 ⊗ x2) = (n− 2)! x1.

We construct a strong homotopy derivation of V by letting a = y and then
calculate the resulting θn’s to be

θ1(x1) = y

θn(x1 ⊗ y⊗n−1) = n! y

θn(x1 ⊗ y⊗n−2 ⊗ x2) = (n− 1)! x1

and θn is zero on the elements not listed.
For example,

θn(x1 ⊗ y⊗n−2 ⊗ x2) := ln+1(x1 ⊗ y⊗n−2 ⊗ x2 ⊗ y)

= ln+1(x1 ⊗ y⊗n−1 ⊗ x2) = (n− 1)! x1.

5. Symmetrization of A∞ Derivations

We recall that there is a well known injective coalgebra map χ : Sc(V ) −→
T c(V ) given by

χ(v1, . . . , vn) =
∑
σ∈Sn

(−1)e(σ)vσ(1) ⊗ · · · ⊗ vσ(n)

where (−1)e(σ) is the Koszul sign.
Suppose that f : T c(V ) −→ V is a linear map which extends to the coderivation

f : T c(V ) −→ T c(V ) such that π1 ◦ f = f , where π1 : T c(V ) −→ V is projection.
Then the linear map f ◦ χ : Sc(V ) −→ V extends to the coderivation f ◦ χ :
Sc(V ) −→ Sc(V ) and the following diagram commutes (Prop. 5, [3])

Sc(V )
χ−→ T c(V )

f ◦ χ ↑ f ↑ ↘ π1

Sc(V )
χ−→ T c(V )

f−→ V

The symmetrization of an A∞ algebra structure that was mentioned in Section
2 may then be described by the commutative diagram

Sc(V )
χ−→ T c(V )

l ↑ m ↑ ↘ π1
Sc(V )

χ−→ T c(V )
m−→ V

where m =
∑
mn : T c(V ) −→ V is the collection of the A∞ algebra structure

maps, m is the lift of m to a coderivation on T c(V ) with m2 = 0, and the L∞
algebra structure l is the lift of the map m ◦χ : Sc(V ) −→ V to a coderivation on
Sc(V ).
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We now address the issue of symmetrization of strong homotopy derivations of
A∞ algebras.

Proposition 9. Let θ = {θn} denote the the collection of maps giving a strong
homotopy derivation on the A∞ algebra (V,m). Regard θ as a map T c(V ) −→ V
and lift it to the coderivation θ on T c(V ). Then the extension of the map θ ◦ χ :
Sc(V ) −→ V to the coderivation θ′ on Sc(V ) is a strong homotopy derivation on
the L∞ algebra V with algebra structure given by m ◦ χ.

Proof. We claim that [l,θ′] = 0. We have the commutative diagram

Sc(V )
χ−→ T c(V )

θ′ ↑ θ ↑ ↘ π1

Sc(V )
χ−→ T c(V )

θ−→ V

and we calculate
χ[l,θ′] = χ(lθ′ + θ′l)

= (χl)θ′ + (χθ′)l

= m(χθ′) + θ(χl)

= mθχ+ θmχ

= [m,θ]χ = 0

because χ ◦ l = m ◦χ from the commutative diagram and [m,θ] = 0 because θ is
a strong homotopy derivation of an A∞ algebra. Because χ is injective, it follows
that [l,θ′] = 0. �

We thank the referee for the careful reading of this article and for the helpful
corrections.
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